AN EKHOLM–SZŰCS-TYPE FORMULA FOR CODIMENSION ONE IMMERSIONS OF 3-MANIFOLDS UP TO BORDISM

MASAMICHI TAKASE

Abstract
We give a formula for the bordism class of an immersion of an oriented 3-manifold in 4-space. It expresses the class in terms of the topology of a null-cobordism of the 3-manifold and certain singularities (the number of umbilic points) of a generic map of this null-cobordism into 4-space which extends the immersion.

1. Introduction
Two immersions of oriented n-manifolds in \mathbb{R}^{n+k} are said to be oriented bordant if there is an immersion of a compact oriented $(n+1)$-manifold with boundary in $\mathbb{R}^{n+k+1} \times [0,1]$ whose restriction to the boundary consists of the given immersions. The set $SI(n,k)$ of oriented bordism classes of immersions of n-manifolds in \mathbb{R}^{n+k} is an abelian group under the operation of disjoint union of immersions (see [28]).

This paper deals with the group $SI(3,1)$ of oriented bordism classes of immersions of oriented 3-manifolds in \mathbb{R}^4. The group $SI(3,1)$ has been computed in [13] to be isomorphic to the cyclic group $\mathbb{Z}_{24}(=\mathbb{Z}/24\mathbb{Z})$ (see also [8, §4]). Our aim is to give a new formula for the isomorphism $SI(3,1) \approx \mathbb{Z}_{24}$, in terms of ‘singular Seifert surfaces’. Several applications are given in Section 4. We will consider smooth (that is, C^∞-differentiable) manifolds and smooth immersions throughout.

2. Background

2.1. Singular Seifert surfaces
In knot theory, a Seifert surface for a given knot plays an important role. For instance, according to Hughes and Melvin [9], higher-dimensional knots are completely classified up to regular homotopy by the signatures of their Seifert surfaces. Ekholm and Szűcs [5] further generalised Hughes and Melvin’s work by introducing the notion of a singular Seifert surface, which has become an important tool in the study of geometric aspects of embeddings, immersions [5, 6, 10, 17, 18, 24] and other mappings [1] of manifolds (see also [2, 15, 23, 25] for other recent studies in this direction).

In our case, for an immersion $f : M^3 \hookrightarrow \mathbb{R}^4$ of an oriented 3-manifold in \mathbb{R}^4, its singular Seifert surface is a generic map $F : V^4 \to \mathbb{R}^4$ from a compact oriented 4-manifold V^4 with $\partial V^4 = M^3$, which has no singularity near the boundary and satisfies $F|_{\partial V^4} = f$. Such a singular Seifert surface always exists, since an immersion $f : M^3 \hookrightarrow \mathbb{R}^4$ of an oriented 3-manifold in \mathbb{R}^4 has trivial normal bundle.

Received 14 August 2005; revised 10 January 2006; published online 14 December 2006.
2000 Mathematics Subject Classification 57R42 (primary), 57R45, 57R90 (secondary).
The author is partially supported by the Grant-in-Aid for JSPS Fellows.
2.2. Generic maps from 4-manifolds and their umbilic points

Let $G: W^4 \to \mathbb{R}^4$ be a generic smooth map from a closed oriented 4-manifold into \mathbb{R}^4. Then it is known that the possible stable singularities of G are:
- fold (or A_1-type) singularities,
- cusp (or A_2-type) singularities,
- swallowtail (or A_3-type) singularities,
- butterfly (or A_4-type) singularities, and
- umbilic (or $\Sigma^2,0$-type) singularities.

In particular, the set $\Sigma^2,0(G)$ of umbilic singularities of G forms a 0-dimensional submanifold of W^4, and each umbilic singular point has an associated sign (see, for example, [20]). Denote by $\sharp\Sigma^2,0(G)$ the sum of the signs of the umbilic points of the map G. Then the Thom polynomial for umbilic singularities is calculated as
$$\sharp\Sigma^2,0(G) = 3\sigma(W^4),$$
where $\sigma(W^4)$ is the signature of W^4. For a concise review of the material here, see, for example, [16, §2].

2.3. The induced spin structure

Let $f: M^3 \to \mathbb{R}^4$ be an immersion of an oriented 3-manifold in \mathbb{R}^4. Then the standard trivialisation of $T\mathbb{R}^4$, via the bundle isomorphism
$$\varepsilon^1 \oplus TM^3 \cong f^*T\mathbb{R}^4,$$
induces a spin structure s_f of M^3 (where ε^1 is the trivial one-dimensional vector bundle).

Recall also that the μ-invariant (or Rohlin invariant) $\mu(M^3, s)$ of a spin 3-manifold M^3 (endowed with a spin structure s) is defined by
$$\mu(M^3, s) := \sigma(V^4) \pmod{16},$$
where V^4 is an arbitrary spin 4-manifold spin-bounded by (M^3, s).

3. An Ekholm-Szűcs type formula for $\text{SI}(3, 1)$

The following is our main formula, which enables us to read off the oriented bordism class of a given immersion through its singular Seifert surface.

Theorem 3.1. The following is an isomorphism:
$$\text{SI}(3, 1) \to \mathbb{Z}_{24},$$
$$f \mapsto \frac{3(\sigma(V^4) - \mu(M^3, s_f)) - 2\sharp\Sigma^2,0(F)}{2} \pmod{24},$$
where $F: V^4 \to \mathbb{R}^4$ is a singular Seifert surface for f and $\mu(M^3, s_f)$ denotes the μ-invariant of M^3 with respect to the spin structure s_f induced by f.

To prove Theorem 3.1, we will use the following notation and Lemma 3.2 below. Denote by $\text{Imm}[M^n, \mathbb{R}^{n+k}]$ the group of regular homotopy classes of immersions of M^n in \mathbb{R}^{n+k}. Then the Smale invariant Ω (see [19]) and the inclusion $j: \mathbb{R}^4 \subset \mathbb{R}^5$ induce diagram (1), where each vertical arrow (the Smale invariant) is a group isomorphism and the generators are chosen according to [8, §2 and p. 180].
\[\begin{align*}
\text{Imm}[S^3, \mathbb{R}^4] & \xrightarrow{\imath} \text{Imm}[S^3, \mathbb{R}^5] \\
\Omega \mid_{\mathbb{Z} \oplus \mathbb{Z}} \mid_{n \rightarrow n + 2n} & \approx \Omega
\end{align*}\] (1)

Lemma 3.2. Let \(f : M^3 \hookrightarrow \mathbb{R}^4 \) be an immersion of a closed oriented 3-manifold \(M^3 \) in \(\mathbb{R}^4 \). Then the integer
\[a(f) := 3\sigma(V^4) - 2\Sigma^{2,0}(F),\]
where \(F : V^4 \rightarrow \mathbb{R}^4 \) is a singular Seifert surface for \(f \), does not depend on the choice of the singular Seifert surface, and is invariant up to regular homotopy of \(f \).

Furthermore, in the case \(M^3 = S^3 \), for an immersion \(f : S^3 \hookrightarrow \mathbb{R}^4 \) we have
\[a(f) = -2\Omega(j \circ f),\]
where \(\Omega(j \circ f) \) is the Smale invariant of the composition \(j \circ f : S^3 \hookrightarrow \mathbb{R}^5 \) of \(f \) with the inclusion \(j \).

Proof of Lemma 3.2. Let \(f_0 \) and \(f_1 : M^3 \hookrightarrow \mathbb{R}^4 \) be two immersions regularly homotopic to each other, and let \(h : M^3 \times [0, 1] \rightarrow \mathbb{R}^4 \times [0, 1] \) be a regular homotopy between them. Then, by using singular Seifert surfaces \(F_i : V_i^4 \rightarrow \mathbb{R}^4 \) for \(f_i \) \((i = 0, 1)\) and \(h \), we can construct a map
\[V_0^4 \cup V_0^4(M^3 \times [0, 1]) \cup V_0^4(-V_1^4) \rightarrow \mathbb{R}^4 \times [0, 1]\]
from the closed 4-manifold \(W^4 := V_0^4 \cup V_0^4(M^3 \times [0, 1]) \cup V_0^4(-V_1^4) \), obtained by gluing \(M^3 \times [0, 1] \) and \(V_1^4 \) \((i = 0, 1)\) along their common boundaries. By composing this map (suitably smoothed) with the projection \(\mathbb{R}^4 \times [0, 1] \rightarrow \mathbb{R}^4 \), we obtain a generic smooth map \(G : W^4 \rightarrow \mathbb{R}^4 \). The algebraic number \(2\Sigma^{2,0}(G) \) of umbilic points of \(G \) is equal to \(2\Sigma^{2,0}(F_0) - 2\Sigma^{2,0}(F_1) \), since the regular homotopy \(h : M^3 \times [0, 1] \rightarrow \mathbb{R}^4 \times [0, 1] \) is an immersion, and therefore its generic projection onto \(\mathbb{R}^4 \) has rank at least 3 everywhere.

By the Thom polynomial given in Section 2.2, we have \(3\sigma(W^4) = 2\Sigma^{2,0}(G) \) and hence
\[3\sigma(V_0^4) - 2\Sigma^{2,0}(F_0) = 3\sigma(V_1^4) - 2\Sigma^{2,0}(F_1).\]
Thus, the first part of the claim is proved.

In the case where \(M^3 = S^3 \), the invariant \(a \) clearly gives rise to the homomorphism
\[a : \text{Imm}[S^3, \mathbb{R}^4] \rightarrow \mathbb{Z} \]
and we have to show that \(a \) coincides with the homomorphism
\[b : \text{Imm}[S^3, \mathbb{R}^4] \xrightarrow{j} \text{Imm}[S^3, \mathbb{R}^5] \xrightarrow{-2\Omega} \mathbb{Z}.
\]
Consider the subgroup \(E \subset \text{Imm}[S^3, \mathbb{R}^4] \) corresponding to
\[\{(m, n) \in \mathbb{Z} \oplus \mathbb{Z} \mid m + 2n \in 24\mathbb{Z}\}\]
via the Smale invariant \(\Omega : \text{Imm}[S^3, \mathbb{R}^4] \xrightarrow{\approx} \mathbb{Z} \oplus \mathbb{Z} \). Then [8, Theorem 3.1] shows that each class \((m, n)\) in \(E \) is represented by the boundary of an immersion \(F \) of the punctured manifold \(V^4 \setminus \text{Int} D^4 \) in \(\mathbb{R}^4 \) for a closed spin 4-manifold \(V^4 \) with Euler characteristic \(\chi(V^4) = m + 2 \) and signature \(\sigma(V^4) = -2(m + 2n)/3 \). Therefore, by [8, Theorem 3.1] and diagram (1) above, the two homomorphisms \(a \) and \(b \) coincide on the subgroup \(E \),
\[a(F|_{\partial(V^4 \setminus \text{Int} D^4)}) = b(F|_{\partial(V^4 \setminus \text{Int} D^4)}) = 3\sigma(V^4).
\]
Hence we have \(a = b \). This completes the proof. \(\square\)

Remark 3.3. We may want to extend the given immersion \(M^3 \hookrightarrow \mathbb{R}^4 \) by a generic map \(F \) of an oriented 4-manifold \(V^4 \) into \(\mathbb{R}^5_+ \) (the upper half-space of \(\mathbb{R}^5 \), bounded by \(\mathbb{R}^4 \)). In this case,
cusp points of the extension F play a role, due to a result by Szücs [21, §2]. In fact, Ekholm and Szücs [5, Theorem 1.1; see also Remark 3.1] suggest a similar statement to Lemma 3.2 in terms of the signature $\sigma(V^4)$ and the number of cusp points of F. See also [1, §3.2].

Remark 3.4. The Smale–Hirsch theory [7] implies that for immersions $M^3 \hookrightarrow \mathbb{R}^4$, their regular homotopy classes bijectively correspond to homotopy classes of their induced stable framings (that is, trivialisations of $\varepsilon^3 \oplus TM^3$). In fact, the regular homotopy class of a given immersion $M^3 \hookrightarrow \mathbb{R}^4$ is characterised by the induced spin structure and the two integers, ‘the Hirzebruch defect’ and ‘the normal degree’ associated to the induced stable framing (see [11]). Actually, the invariant a in Lemma 3.2 precisely equals the Hirzebruch defect of the induced stable framing.

Proof of Theorem 3.1. Let $f_0: M^3_0 \hookrightarrow \mathbb{R}^4$ and $f_1: M^3_1 \hookrightarrow \mathbb{R}^4$ be two immersions, oriented bordant to each other, and let $h: X^4 \hookrightarrow \mathbb{R}^4 \times [0, 1]$ be an oriented bordism between them. Then, by using singular Seifert surfaces $F_i: V^4_i \rightarrow \mathbb{R}^4$ for f_i ($i = 0, 1$) and h, we obtain a generic map

$$G: V^4_0 \bigcup_{\mu} X^4 \bigcup_{\nu} (-V^4_1) \rightarrow \mathbb{R}^4$$

from the closed 4-manifold obtained by gluing X^4 and V^4_i ($i = 0, 1$) along their common boundaries. This and the following steps are very similar to the proof of Lemma 3.2. That is, since G has no umbilic points on X^4, which is originally immersed in $\mathbb{R}^4 \times [0, 1]$, we have

$$3(\sigma(V^4_0) - \mu(M^3_0, s_{f_0})) = \frac{1}{2} \Sigma^{2,0}(F_0) - \frac{1}{2} \Sigma^{2,0}(F_1).$$

The immersion h induces, from the unique spin structure $\mathbb{R}^4 \times [0, 1]$, the spin structure on X^4, with which X^4 becomes a spin cobordism between (M^3_0, s_{f_0}) and (M^3_1, s_{f_1}). Therefore, we see that

$$\sigma(X^4) \equiv \mu(M^3_1, s_{f_1}) - \mu(M^3_0, s_{f_0}) \pmod{16}.$$

Thus, we have

$$3(\sigma(V^4_0) - \mu(M^3_0, s_{f_0})) - \frac{1}{2} \Sigma^{2,0}(F_0) \equiv 3(\sigma(V^4_1) - \mu(M^3_1, s_{f_1})) - \frac{1}{2} \Sigma^{2,0}(F_1) \pmod{48}.$$

Hence, for a given immersion $f: M^3 \hookrightarrow \mathbb{R}^4$, by defining

$$c(f) := 3(\sigma(V^4) - \mu(M^3, s_f)) - \frac{1}{2} \Sigma^{2,0}(F)$$

using an arbitrary singular Seifert surface $F: V^4 \rightarrow \mathbb{R}^4$, we obtain the homomorphism

$$c: SI(3, 1) \rightarrow \mathbb{Z}_{48}.$$

Hughes [8, Theorem 2.3 and p. 180] has given an immersion $k: S^3 \hookrightarrow \mathbb{R}^4$ representing a generator of $SI(3, 1)$ (which is obtained by capping off a sphere eversion), and has shown that $\Omega(j \circ k) = 1$ (up to sign). Therefore, by Lemma 3.2, we have $c(k) \equiv a(k) \equiv -2\Omega(j \circ k) \equiv \pm 2 \pmod{48}$. This completes the proof.

Theorem 3.1 has the following direct corollary.

Corollary 3.5. For an immersion f of an oriented 3-manifold in \mathbb{R}^4, the modulo 3 algebraic number $\frac{1}{2} \Sigma^{2,0}(F) \mod 3$ of the umbilic points of a singular Seifert surface F is invariant up to oriented bordism of f.

Remark 3.6. Let $f: M^3 \hookrightarrow \mathbb{R}^4$ be an immersion. We can assume that f is self-transversal after a small regular homotopy. Then, according to [22, Lemma 1.7(a)] (see also [4, §7.4]), we can define the epimorphism

$$\beta: SI(3, 1) \rightarrow \mathbb{Z}_8,$$
by the Brown invariant \([3]\) of the double-point surface of \(f\) with the induced \(\text{Pin}^-\)-structure. We call \(\beta(f)\) the Brown invariant of \(f\), which, together with the epimorphism

\[
\text{SI}(3, 1) \to \mathbb{Z}_3
\]

defined by the algebraic number (modulo 3) of umbilic points of a singular Seifert surface (see Corollary 3.5), also describes \(\text{SI}(3, 1)\).

The following is also an easy corollary of Theorem 3.1 (or of Lemma 3.2).

Corollary 3.7. If an immersion \(f: S^3 \hookrightarrow \mathbb{R}^4\) has a singular Seifert surface \(V^4 \to \mathbb{R}^4\) from a compact spin 4-manifold \(V^4\) with algebraically zero umbilic points, then \(f\) is regularly homotopic to the boundary of an immersion \(Y^4 \hookrightarrow \mathbb{R}^4\) of a compact spin 4-manifold \(Y^4\) with \(\sigma(Y^4) = \sigma(V^4)\).

Proof. If \(f\) has a singular Seifert surface from a compact spin 4-manifold \(V^4\) with algebraically zero umbilic points, then \(f\) is null-bordant, by Theorem 3.1. According to [8, p. 180], this implies that the regular homotopy class of \(f\) belongs to the kernel of

\[
\text{Imm}[S^3, \mathbb{R}^4] \longrightarrow \text{Imm}[S^3, \mathbb{R}^5] \xrightarrow{\Omega} \mathbb{Z} \xrightarrow{\text{proj.}} \mathbb{Z}_{24},
\]

which is exactly the subgroup \(E \subset \text{Imm}[S^3, \mathbb{R}^4]\) (see the proof of Lemma 3.2). Again by [8, Theorem 3.1], each class of \(E\) can be represented by the boundary of an immersion of a compact spin 4-manifold with suitable Euler characteristic and signature.

By using the singular Seifert surface \(V^4 \to \mathbb{R}^4\) and the immersion of \(Y^4 \hookrightarrow \mathbb{R}^4\), we can construct a generic smooth map \(V^4 \cup_{\partial} (-Y^4) \to \mathbb{R}^4\) with algebraically zero umbilic points. Therefore, we have \(\sigma(Y^4) = \sigma(V^4)\) (see Section 2.2).

\[
\text{Corollary 4.1.}\quad \text{Let } F: V^4 \to \mathbb{R}^4\text{ be a generic smooth map from a compact oriented 4-manifold } V^4\text{ with no singularity near the boundary } \partial V^4(\neq \emptyset).\text{ Then}
\]

\[
\sharp \Sigma_{2,0}^2(F) \equiv \sigma(V^4) - \mu_2(\partial V^4) \pmod{2}.
\]

Proof. We need only to look at the numerator of the formula in Theorem 3.1.

Remark 4.2. (i) Corollary 4.1, taken together with [27, Corollary 4.7], yields that if \(H_1(\partial V^4; \mathbb{Z}_2) = 0\), we have

\[
\sharp \Sigma_{2,0}^2(F) \equiv \sigma(V^4) - |H_1(\partial V^4; \mathbb{Z})| - 1 \pmod{2}
\]

\[
\equiv \dim_\mathbb{Z} H_2(V^4; \mathbb{Z}) - |H_1(\partial V^4; \mathbb{Z})| - 1 \pmod{2}.
\]
(ii) Similarly, together with [27, Corollary 4.8], Corollary 4.1 yields that if $H_1(\partial V^4; \mathbb{Q}) = 0$, we have

$$
\sharp \Sigma^2(F) \equiv \sigma(V^4) - \dim_{\mathbb{Z}_2} H_1(\partial V^4; \mathbb{Z}_2) \quad \text{(mod 2)}
$$

$$
\equiv \dim_{\mathbb{Z}} H_2(V^4; \mathbb{Z}) - \dim_{\mathbb{Z}_2} H_1(\partial V^4; \mathbb{Z}_2) \quad \text{(mod 2)}.
$$

Combining the formula in Theorem 3.1 with the Brown invariant β in Remark 3.6, we have the following corollary.

Corollary 4.3. Let $F: V^4 \to \mathbb{R}^4$ be a generic smooth map from a compact oriented 4-manifold V^4 with no singularity near the boundary $\partial V^4(\neq \emptyset)$. Then

$$
\sharp \Sigma^{2,0}(F) \equiv 3(\sigma(V^4) - \mu(\partial V^4, s_{F|_{\partial V^4}})) - 2\beta(F|_{\partial V^4}) \quad \text{(mod 4)}.
$$

Proof. The conclusion follows from the fact that the isomorphism $\text{SI}(3,1) \to \mathbb{Z}_{24}$ in Theorem 3.1 and the epimorphism $\beta: \text{SI}(3,1) \to \mathbb{Z}_{8}$ coincide modulo 2.

The following theorem implies that not every immersion $S^3 \looparrowright \mathbb{R}^4$ can be lifted to an embedding in \mathbb{R}^6. Let $j: \mathbb{R}^4 \to \mathbb{R}^5$ be the inclusion.

Theorem 4.4. If an immersion $f: S^3 \looparrowright \mathbb{R}^4$ is regularly homotopic to the projection of an embedding $S^3 \hookrightarrow \mathbb{R}^6$, then the Brown invariant $\beta(f)$ of f is even.

Proof. If f is regularly homotopic to an immersion f' which is the projection of an embedding in \mathbb{R}^6, then by [26, Theorem 3.2] the Smale invariant $\Omega(j \circ f')$ of the immersion $j \circ f': S^3 \looparrowright \mathbb{R}^5$ is even. Since $\Omega(j \circ f) = \Omega(j \circ f')$, by Lemma 3.2,

$$
3\sigma(V^4) - \sharp \Sigma^{2,0}(F) = -2\Omega(j \circ f) \equiv 0 \quad \text{(mod 4)},
$$

with respect to a singular Seifert surface $F: V^4 \to \mathbb{R}^4$ for f. This is equivalent to $\beta(f) \equiv 0 \mod 2$, by Corollary 4.3.

Theorem 4.4 implies that an immersion $S^3 \looparrowright \mathbb{R}^4$ with ‘complicated’ self-intersections cannot be lifted to an embedding in \mathbb{R}^6, while it can always be lifted to an embedding in \mathbb{R}^7. Concerning a possible converse of Theorem 4.4, we prove only the following weak proposition. Let $p_1: \mathbb{R}^6 \to \mathbb{R}^5$ and $p_2: \mathbb{R}^6 \to \mathbb{R}^4$ be the projections.

Proposition 4.5. An immersion $f: S^3 \looparrowright \mathbb{R}^4$ with even Brown invariant is bordant to the projection of an embedding $S^3 \hookrightarrow \mathbb{R}^6$.

Proof. By Corollary 4.3, $\beta(f) \equiv 0 \mod 2$ implies that $3\sigma(V^4) - \sharp \Sigma^{2,0}(F) \equiv 0 \mod 4$, where $F: V^4 \to \mathbb{R}^4$ is a singular Seifert surface for f. Hence, by Lemma 3.2, the Smale invariant $\Omega(j \circ f)$ is even. Then, according to [26, Corollary 3.4], $j \circ f$ is regularly homotopic to an immersion $S^3 \looparrowright \mathbb{R}^5$ which is the projection $p_1 \circ G$ of an embedding $G: S^3 \hookrightarrow \mathbb{R}^6$.

The proof of [14, Corollary: Multi-compression Theorem 4.5] implies that G can be isotoped to an embedding G' whose projection $p_2 \circ G': S^3 \looparrowright \mathbb{R}^4$ is an immersion, by an isotopy which covers a regular homotopy between $p_1 \circ G$ and $p_1 \circ G': S^3 \looparrowright \mathbb{R}^5$.

Thus, the immersions $j \circ f$ (which is regularly homotopic to $p_1 \circ G$) and $j \circ p_2 \circ G$ (which is regularly homotopic to $p_1 \circ G'$) are regularly homotopic; that is,

$$
\Omega(j \circ f) = \Omega(j \circ p_2 \circ G).
$$

Hence, by Lemma 3.2 and Theorem 3.1 (see also [8, p. 180]), f is bordant to $p_2 \circ G$.

\qed
Acknowledgements. The author would like to thank Professor Osamu Saeki for his invaluable comments. Thanks are also due to the referee for helpful suggestions.

References

Masamichi Takase
Department of Mathematics
University of Iowa
14 MacLean Hall
Iowa City, IA 52242-1419
USA
mtakase@math.uiowa.edu

Current address:
Department of Mathematical Sciences
Faculty of Science
Shinsu University
Matsumoto 390–8621
Japan
takase@math.shinsu-u.ac.jp